The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion.

نویسندگان

  • A Antal
  • J Baudewig
  • W Paulus
  • P Dechent
چکیده

The posterior cingulate cortex (PCC) is involved in higher order sensory and sensory-motor integration while the planum temporale/parietal operculum (PT/PO) junction takes part in auditory motion and vestibular processing. Both regions are activated during different types of visual stimulation. Here, we describe the response characteristics of the PCC and PT/PO to basic types of visual motion stimuli of different complexity (complex and simple coherent as well as incoherent motion). Functional magnetic resonance imaging (fMRI) was performed in 10 healthy subjects at 3 Tesla, whereby different moving dot stimuli (vertical, horizontal, rotational, radial, and random) were contrasted against a static dot pattern. All motion stimuli activated a distributed cortical network, including previously described motion-sensitive striate and extrastriate visual areas. Bilateral activations in the dorsal region of the PCC (dPCC) were evoked using coherent motion stimuli, irrespective of motion direction (vertical, horizontal, rotational, radial) with increasing activity and with higher complexity of the stimulus. In contrast, the PT/PO responded equally well to all of the different coherent motion types. Incoherent (random) motion yielded significantly less activation both in the dPCC and in the PT/PO area. These results suggest that the dPCC and the PT/PO take part in the processing of basic types of visual motion. However, in dPCC a possible effect of attentional modulation resulting in the higher activity evoked by the complex stimuli should also be considered. Further studies are warranted to incorporate these regions into the current model of the cortical motion processing network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties.

In humans, neuroimaging studies have identified the planum temporale to be particularly responsive to both spatial and nonspatial attributes of sound. However, a functional segregation of the planum temporale along these acoustic dimensions has not been firmly established. We evaluated this scheme in a factorial design using modulated sounds that generated a percept of motion (spatial) or frequ...

متن کامل

The parietal opercular auditory-sensorimotor network in musicians: A resting-state fMRI study

Auditory-sensorimotor coupling is critical for musical performance, during which auditory and somatosensory feedback signals are used to ensure desired outputs. Previous studies reported opercular activation in subjects performing or listening to music. A functional connectivity analysis suggested the parietal operculum (PO) as a connector hub that links auditory, somatosensory, and motor corti...

متن کامل

Does it look painful or disgusting? Ask your parietal and cingulate cortex.

Looking at still images of body parts in situations that are likely to cause pain has been shown to be associated with activation in some brain areas involved in pain processing. Because pain involves both sensory components and negative affect, it is of interest to explore whether the visually evoked representations of pain and of other negative emotions overlap. By means of event-related func...

متن کامل

Perception of Sound-Source Motion by the Human Brain

We assessed the human brain network for sound-motion processing using the same virtual stimulus in three independent functional imaging experiments. All experiments show a bilateral posterior network of activation, including planum temporale (PT) and parieto-temporal operculum (PTO). This was demonstrated in contrasts between sound movement and two control conditions: externalized stationary st...

متن کامل

Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study.

Although anatomical, histochemical and electrophysiological findings in both animals and humans have suggested a parallel and serial mode of auditory processing, precise activation timings of each cortical area are not well known, especially in humans. We investigated the timing of arrival of signals to multiple cortical areas using magnetoencephalography in humans. Following click stimuli appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Visual neuroscience

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2008